
JPEO JTRS

Joint Program Executive Office
Joint Tactical Radio System

Statement B – Distribution authorized to U.S. Government Agencies only; Further dissemination at the direction of JPEO JTRS or higher authority only
Statement A: Approved for public release, distribution is unlimited (04 May 2011).

JTRS Standards

Conditional Inheritance Overview

2Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Introduction
• SCA Next includes a techniques referred to as

Conditional Inheritance (CI)
• This brief attempts to accomplish the following:

– Define conditional inheritance
– Discuss why the SCA Next development team felt it was

an appropriate solution
– Compare and contrast CI with some of the other

alternative approaches that may have been incorporated
within the spec

3Statement A: Approved for public release, distribution is unlimited (04 May 2011).

SCA Next Design Objective
• Goal

– To have a flexible architecture that can accommodate various
platforms requirements instead of one size fits all solution

• mobile versus static,
• single channel versus multiple channels,
• single waveform versus multiple waveforms,
• small form factor,
• …

• Benefits
– The elimination of interfaces that are not needed by a component

results in:
• Increased Information Assurance - increased by removing unused operations

from deployed code.
• Footprint Size - reduced executable software's size.
• Performance - smaller software executable will consume less overhead
• Development Time - fewer requirements reduces time spent implementing,

testing, and integrating.

4Statement A: Approved for public release, distribution is unlimited (04 May 2011).

What is Conditional Inheritance?
• Components always realize a single interface for

framework management, but what that interface
inherits from is optional

• Optional inheritance is expressed in pre-compiler
directives that resolve at Interface Definition
Language (IDL) compile time

<i>
CF::PropertySet

<i>
CF::Resource

My WF
Component

Note: Cardinality put on
the inheritance itself

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE

interface Resource : Lifecycle
#if defined(CONFIGURABLE) ,PropertySet #endif
{}

Note: Pre-compiler
directives are used to allow
the inheritance be optional

5Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Pros and Cons
• Benefits

– Framework only requires the component provide one
management object reference

– Components are clearly provided this management interface
by the architecture and don’t have to invent their own

– Backwards Compatible with SCA v2.2.2
– Coupled with IDL decomposition it provides a means to reduce

implementation footprint and tailor components to an end
product

• Problems
– Violates Unified Modeling Language (UML) inheritance rule

• May impact out of the box tool support
– IDL generation
– Reverse engineering

– Single Operating System (OS) Address Space Restriction
• Means same Resource/Device IDL translation needs to be used,

which is the same result as now for SCA v2.2.2

6Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Interface Refactoring

SCA v2.2.2

<i>
CF::LodableDevice

<i>
CF::Device

<i>
CF::Resource

<i>
CF::ExecutableDevice

Proposed SCA Next

<i>
CF::LodableDevice

<i>
CF::Device

<i>
CF::Resource

<i>
CF::ExecutableDevice

Note: Interface Inheritance is removed to avoid hitting the optional inheritance link limitation.
Backward Compatibility should not be severely impacted due to:

1)To better facilitate the “push model”, components should be collected as ComponentType
structs, not simple references (ComponentType defined in Deployment Optimizations)

2) If Resource, Device, LoadableDevice, ExecutableDevice references do need to be
combined in the same collection, they can still be treated as opaque “CORBA::Objects”

• The incorporation of CI was integrated with other SCA
Next changes

• Several SCA Next interfaces were restructured to
account for the address space limitation

7Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Performance Optimizations - Pro
• Savings in Runtime Costs

– Executable Footprint
– Load (i.e. startup) time

<i>
CF::PropertySet

Component <c++>
POA_CF::PropertySet

<c++>
CF::PropertySet

<c++>
CF::InvalidConfiguration

<c++>
CF::PartialConfiguration

<c++>
CF::PropertySet_ProxyFactory

Executable

Stub

Skeleton
<c++>

POA_CF__PropertySet_skeleton

Executable Footprint Savings
For CF::PropertySet, there’s roughly a 19 – 40 KB savings
per executable (estimate) in Stub and Skeleton code
alone. Doesn’t include any impl code (e.g. to throw
required exceptions, etc.)

8Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Cost Savings - Pro
• Savings in Software Lifecycle Costs

– Where base classes are not utilized there are savings that
can be realized in Requirements Analysis, Design,
Implementation, Test, and Security Verification

•CF::PropertySet Requirements (SCA v2.2.2)

•The configure operation shall assign values to the properties as indicated in the input configProperties
parameter.

•Valid properties for the configure operation shall at a minimum be the configure readwrite and writeonly
properties referenced in the component’s SPD.

•The configure operation shall raise a PartialConfiguration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

•The configure operation shall raise an InvalidConfiguration exception when a configuration error occurs
and no configuration properties were successfully set.

•The query operation shall return all component properties when the inout parameter configProperties is
zero size.

•The query operation shall return only those id/value pairs specified in the configProperties parameter if
the parameter is not zero size.

•Valid properties for the query operation shall be all configure properties (simple properties whose kind
element’s kindtype attribute is “configure”) whose mode attribute is “readwrite” or “readonly” and any
allocation properties with an action value of "external" as referenced in the component's SPD.

•The query operation shall raise the CF UnknownProperties exception when one or more properties
being requested are not known by the component.

<i>
CF::PropertySet

Component

9Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Development Lifecycle Optimizations -
Pro

SCA

Component

Requirements

Design Test

Requirement Analysis
Savings in Requirement Analysis
Savings in SRS generation

Design
Savings in High Level Design
Savings in Detailed Design
Savings in SDD generation

Test Planning
Savings in Test Planning
Savings in Test Procedure Generation

Testing
Savings in Test Execution

Implementation
Savings in Component Implementation
Savings in Unit Testing
Savings in Integration Testing

Security
Verification

Security Verification
Savings in Unused Code negotiations

10Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Tool Support - Mitigation
Effect on modeling can be mitigated

– Decision on customization can be made early in the design process
• Derived IDL could be created with desired inheritance made statically, then

imported into the model
• SCA IDL could be imported and desired inheritance entered into the model

directly
– Most of the modeling process unaffected

• No change to modeling after IDL translation

SCA
IDL

Stubs &
Skels

Interface
Model

Source
Model

Impls

Reverse
Engineer

Translate

Reverse
Engineer

Forward
Engineer

SCA
IDL

Stubs &
Skels

Interface
Model

Source
Model

Impls

Reverse
Engineer

Translate w/ Selected
Switches

Reverse
Engineer

Forward
Engineer

Derived
IDL

Select
Switches

SCA v2.2.2 Proposed SCA Next

11Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Conditional Inheritance Address Space
Restriction - Con

• Two Address Spaces with different IDL translations
<i>

CF::PropertySet

<i>
CF::Resource

My WF
Component A

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE <i>

CF::PropertySet

<i>
CF::Resource

My WF
Component B

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE

A
B

Note: CONFIGURABLE flag not
defined during IDL translation

Note: CONFIGURABLE
flag is defined during IDL
translation

Note: Different translations
can be linked into different
address spaces

12Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Conditional Inheritance Address
Space Restriction cont.

• Link problems ensue when trying to pull IDL that has
been translated differently into the same address
space

<i>
CF::PropertySet

<i>
CF::Resource

My WF
Component A

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE

<i>
CF::PropertySet

<i>
CF::Resource

My WF
Component B

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE

A

B

Note: CONFIGURABLE
flag not defined during
IDL translation

Note: CONFIGURABLE
flag is defined during IDL
translation.

Note: Different translations
can not be linked into the
same address space.

13Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Conditional Inheritance Address Space
Restriction cont.

• One Address Space with same IDL translation

My WF
Component A

<i>
CF::PropertySet

<i>
CF::Resource

My WF
Component B

1

1

<i>
CF::Lifecycle

1

0..1
CONFIGURABLE

A
B

Note: CONFIGURABLE
flag is defined during IDL
translation

Note: Translation must be the
same to be linked into the
same address spaces

14Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Address Space Limitations – Mitigation
& Pro

• Scope may be larger than “per address space”
– While “per address space” is the lowest level of granularity, the

technique does not need to be applied at that level
• Switches can be restricted to variations at processor, OE, WF or system

level
– The technique allows an OE on one platform to be customized

differently from an OE on a different platform
• One platform may have fault management done through the

Resource/Device interfaces on all components while another may only
perform it on certain components through direct port connections

• Number of address spaces (i.e. potential benefit)
could be large
– If “per address space” customization is desired, on certain

platforms the technique could be well utilized at that level
– Example larger-scale program deployment

• 4 processor types / 15 address spaces per processor type (average)
• 30 opportunities for OE component customization (average)
• 5 opportunities for WF component customization (average)

15Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Complexity Management - Mitigation
• Complexity and Differences can be mitigated

– If deployment flexibility is a primary concern, throwing all
switches can provide for that

– If all switches are thrown, development effort and
resource requirements are no worse off than if the
technique were not made available at all

• Without this technique, all interfaces would always be required
anyways

16Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Alternatives
• Four alternative approaches were evaluated

– Optional Realization
– Interfaces modeled as provided ports
– Default Implementation
– Maintaining the Status Quo

• The remainder of the brief describes each
approach and provides a comparative
assessment

17Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Optional Realization (OR)
• Allows component developer to selectively include

the required interfaces that will be realized in the
final implementation

• Similar to the approach promoted within the Object
Management Group Software Radio specification

• Does not provide a standardized, well known
interface

My WF
Component

<i>
CF::PropertySet

<i>
CF::Lifecycle

<i>
CF::PropertySet

<i>
CF::Lifecycle

<i>
???

My WF
Component

Components would
only realize the
interfaces “<i>” that
are needed

Each component
would introduce a
new interface to
combine interfaces
into a single
reference

18Statement A: Approved for public release, distribution is unlimited (04 May 2011).

All Interfaces Provided as Ports
• Ports are identified and introduced for all interfaces

realized within the implementation.
• Each supported interface will have a generalization

relationship with the PortAccessor interface
• Introduces considerable changes upon existing

SCA implementations

My WF
Component

<i>
CF::PropertySet

<i>
CF::Lifecycle

Framework has
provides port(s) at
the component or
interface level for
all supported
interfaces

19Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Status Quo & Default Implementation
• Status Quo maintains an interface model equivalent to that of

SCA v 2.2.2
– SCA Next may change the underlying interface definitions but the

overarching model preserves the 1..1 relationship between the
composing and contained interfaces

• The Status Quo provides designers and developers with the
option of stubbing, omitting or partially implementing
unused interfaces

• The Default Implementation differs from the Status Quo in
that the spec would provide a trusted, default
implementation that would be used within a product if no
product specific additions are needed
– Provides uniformity across products

• Providing code as part of or as a companion to the SCA
would introduce a plethora of procedural challenges for a
DoD program

20Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

assu
ranc
e

foot
print

perfor
mance

require
ments

lifecycl
e cost

testabili
ty

portabil
ity

Standar
ds
support

tool
support

dev
support

Backwa
rd
compat

total

Conditional
Inheritance 5 5 5 5 5 3 3 2 2 3 3 41
Optional
Realization 5 5 4 5 4 3 3 3 3 3 3 41
All Interfaces
provided as
ports

5 5 1 5 2 2 3 3 2 3 1 32

Default
Implementatio
n

4 3 3 3 4 3 3 3 3 3 3 35

Status Quo 3 3 3 3 3 3 3 3 3 3 3 33

SCA Next Analysis Results

5 = significant improvement
3 = roughly equivalent to current state
1 = significant impediment

21Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How does SCA Next augment the security profile of compliant products?

Conditional
Inheritance

A large positive for this approach is that only implemented interfaces are present within the code base. A chain
of trust can be developed between the design, the interfaces that are included within the product, the build time
flags or options that are incorporated, and the properties that exist within the profile. There are additional
positives that result from not having the typical collection of interfaces that exist beneath the top level defined
interface.

Optional
Realization

Optional Realization mirrors the benefits provided by conditional inheritance

All Interfaces
provided as
ports

The most security-aware implementation is likely to be the delegation approach used by an implementation in
accordance with this alternative. The implementation receives the conditional inheritance and realization
benefits. Furthermore, delegation also provides the mechanism to create and enforce a distinct separation
between the core interface and each interface provided on a port.

Default
Implementation

This alternative provides a less security-aware product, however it is better than the Status Quo. The default
implementation guarantees the presence of unessential code within the product. The risk or presence of that
code can be mitigated somewhat if a pedigree is built into the code and there is a level of assurance
associated with its existence and functionality.

Status Quo This permits a vulnerability to exist within the products as it forces a product to either provide a full
implementation for something that will never be exercised, not provide an implementation and risk a non-
deterministic result if the operations are inadvertently called or have a stubbed implementation of the operation
which can vary from product to product.

Enhanced Assurance

22Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How can SCA Next reduce the footprint required for compliant products?

Conditional
Inheritance

Savings of 10-50K LOC viewed per executable by only including a subset of the possible interfaces, of course
no savings would be realized if the full configuration is needed and the amount can be greater if additional
capabilities are omitted.

Optional
Realization

Savings would be consistent with those achieved by the conditional interface, with a small amount of additional
overhead incurred if the approach was taken where each component was required to define its own
intermediate interface. Potential improvement vis-a-vis the distinct interfaces provide an opportunity to co-
locate similar but distinct components within an address space.

All Interfaces
provided as
ports

Savings would be consistent with Optional Realization except that the potential savings are due to only
implementing the required interface. Note a small overhead is required (implementation dependent) based on
the number of ports implemented.

Default
Implementation

Somewhat analogous to the Status Quo approach in that all of the interfaces are always present and have an
implementation. The size of the final product could actually be larger than the Status Quo if the default
implementation had a richer, read larger, implementation than those that have been provided by the current set
of implementers.

Status Quo No savings

Footprint

23Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How is the performance of SCA Next compliant products enhanced?

Conditional
Inheritance

The options that rely on multiple inheritance incur more expense than would be required if a single level
interface definition were utilized and the overhead increases with the complexity of the inheritance. The
optimized implementations can enhance performance in cases where the end products are smaller and
targeted towards a specific target.

Optional
Realization

Framework had to be prepared to deal with multiple object references or each component implementation was
left defining it’s own child interface to combine the various interfaces chosen into a single reference. For the
CORBA PSM this may result in “is_a” calls, which impact performance.

All Interfaces
provided as
ports

The port approach, even with the push model registration likely results in increased overhead as the
connections are established but that expense is likely mitigated once the products are running. A substantial
impact would be that the framework would need to be prepared to interrogate the base component in order to
retrieve its implementation details.

Default
Implementation

Status Quo

Performance

24Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How much does SCA Next reduce the mandated requirements for compliant products?

Conditional
Inheritance

This approach can significantly reduce then number of requirements for products that do not need to include
the full complement of flags. A test was run that resulted in a ~30% reduction in the number of requirements
that were allocated to a candidate devices. That number can increase or decrease based on the number of
selected flags.

Optional
Realization

The extent of requirements used by this approach is equivalent to those used by conditional inheritance as
only those interfaces, and their corresponding requirements, are incorporated on an as needed basis.

All Interfaces
provided as
ports

The number of requirements will be reduced, they are introduced on an as needed basis, however this
approach results in a slightly higher number than the conditional approaches as it requires a thin veneer or
requirements for the port(s).

Default
Implementation

The number of requirements will increase for each product however the cost of that increase will be incurred by
the individual product developers as they will be able to integrate a preapproved implementation that satisfies
those requirements within their products.

Status Quo At a high level there will be no requirements savings as a result of using this approach because each product
will be responsible for fulfilling the full complement of requirements.

Requirements

25Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How much can SCA Next reduce the lifecycle cost attributed to compliant products?

Conditional
Inheritance

This approach maximizes the potential savings for each product. The reduction or requirements, and resultant
code eliminates the need these products to worry about the unit design, test of these elements. When those
items are not part of the base units they also do not need to be tested, documented or maintained at the
system level. As the number of requirements saved per unit and the number of components increases , the
extent of this savings is multiplied.

Optional
Realization

Conditional realization duplicates the lifecycle savings of conditional inheritance. Depending on the
implementation approach there may be a slightly higher cost incurred if additional interfaces are required for
the implementation.

All Interfaces
provided as
ports

This approach saves costs, in accordance with the requirements savings, however the presence of the port
mechanism and the connection establishment that is introduced as a result requires a slightly higher cost to
maintain. The degree to which the end to end costs are impacted is very implementation dependent.

Default
Implementation

Better than the Status Quo, this approach requires minimal validation to insure that the correct implementation
is included within the product. There is an initial validation cost associated with providing assurance that the
default implementation behaves and performs correctly but once that is proven it should not need to be
repeated.

Status Quo No change, the approach designed and realized will dictate the eventual cost and how it is incurred. Providing
more or less functionality within the product will incur the cost one way or the other but it will dictate if they are
allocated more towards testing, development, waivers, etc.

Lifecycle Cost

26Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How does SCA Next impact the testability of a compliant products?

Conditional
Inheritance

Improves and complicates testability at the same time. Testability is improved as the number of requirements
are reduced, so there is less to validate, however it complicates matters because the composition of the
individual components is not known a priori. There are ways that some of the uncertainty can be mitigated,
such as the composition of the elements can be discerned by information contained within the profiles
(supported interfaces, properties that exist, …) or the flags that exist within the interface definition file. An item
that allows the approach to be more deterministic is that there is always a guaranteed initial location for the
interface.

Optional
Realization

Similar to conditional inheritance, there is an additional variability because the implementation will dictate the
base point for each of the interfaces. The interface information could be retrieved from the interface definition
file or profile similar to some of the other information but using this approach would require this additional step
and knowledge.

All Interfaces
provided as
ports

Similar to conditional inheritance, the variable aspect of this approach would likely require significant interaction
with the interface definitions or profiles. The port mechanism likely requires the test tools to have more
incorporation with the base components in order to access the delegated interfaces.

Default
Implementation

Similar to the Status Quo however this approach requires the additional step of validating the proper
integration of the approved default implementation.

Status Quo Probably the easiest of the alternatives to use because, to the extent that the product designs are unaffected
by SCA Next, this maximizes the potential reuse of the existing test methodologies and tools.

Testability

27Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How do the SCA Next approaches impact portability of compliant products?

Conditional
Inheritance

There is a potentially significant approach in portability, especially if there are situations where products of
differing profiles need to be integrated with one another. Conditional inheritance is designed using a least
common denominator principle where if items of differing configurations are integrated, in order to assure
functioning without incurring additional porting cost, a decision needs to be made for the integrated unit to
function at the level of the least capable element. The different profiles are constructed in a fashion such that
there is no need to “port” a more capable element being integrated with a less capable one, however it can be
ported if one wants to benefit from the additional savings.

Optional
Realization

Suffers from the same portability challenges as those encountered by conditional inheritance.

All Interfaces
provided as
ports

Approach should be relatively portable since all expectations about the implementation are encapsulated within
the implementation. There are limited decisions or assumptions that the platform can make on the final
products.

Default
Implementation

This approach should not have an impact on portability, however a small amount of thought and effort needs to
be focused towards this implementation to insure that this is the case. The number of default implementations
will need to be expanded as the number of target platforms expands.

Status Quo No impact on the complexity of portability.

Portability

28Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How well does SCA Next allow compliant products to utilize and benefit from commercial
standards?

Conditional
Inheritance

The strategy violates a formal inheritance constraint that exists within the specification, that being said, out of
the box modeling and design tools will not work for forward and reverse engineering types of activities. Once
the design activities transition from system to more solution oriented engineering , then the approach maps into
platform specific representations that are consistent with the language provided Standards. Inquires to OMG
have been made to OMG and are under consideration, we have considered proposing an additional UML
profile or changes to the UML spec to accommodate this concept.

Optional
Realization

Consistent with and utilizes industry Standards.

All Interfaces
provided as
ports

Consistent with and utilizes industry Standards.

Default
Implementation

Consistent with and utilizes industry Standards.

Status Quo Consistent with and utilizes industry Standards.

Standards Support

29Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

Does SCA Next facilitate the incorporation of commercial tools in the production of compliant
products?

Conditional
Inheritance

The Standards deviation makes it difficult to use out of the box Model Driven Development and software /
systems engineering tools. This probably is not a universal deficiency as it is fairly likely that some
customization could occur at the MOF layer that could be integrated within the products. If that customization is
possible then it would mitigate some of the impacts but it would also present a lingering constraint as it would
likely be the case that any other products or abilities combined with these product would need to allow for
integration of custom MOF layouts. The impact of the lack of out of the box tool support would be most acutely
felt in organizations using some aspect of Model /Tool Driven Engineering. If modeling is not used within a
development process or it is, but no code is auto generated or no underlying architectures are extracted then
the impacts should be negligible.

Optional
Realization

Design approach is consistent with Standards so out of the box commercial tools should work

All Interfaces
provided as
ports

Design approach is consistent with Standards so out of the box commercial tools should work. Care should be
taken in forward engineering to ensure that an optimal model to code transformation is performed . This
approach would have more of a pronounced on existing SCA centric tools because it represents a major shift in
the associations between the interfaces.

Default
Implementation

Design approach is consistent with Standards so out of the box commercial tools should work. Minor
customizations would need to be incorporated within the forward and reverse engineering processes . In the
forward direction a special indicator would need to be applied to ensure that the default mapping was included.
In the reverse direction an indicator would need to map elements to highlight that the default implementation
was utilized in the code.

Status Quo Design approach is consistent with Standards so out of the box commercial tools should work

Tool Support

30Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

Can SCA Next effectively and efficiently used development environments and tool
capabilities to build compliant products?

Conditional
Inheritance

Approach is built utilizing a philosophy that the top level interface is the only reliable one for a component and
additional ones can be present if those extended capabilities are important to the component being developed.
All products in this environment should be built with an alignment to that idea. With the shared understanding
in place, it should serve to constrain the OE calls that are produced by generic tools or capabilities. General
tools providers can use an iterative approach to identify the composition of constituent elements or those
products can take advantage of the same well know switches and flags utilized by the products. A design
consideration that needs to be taken into consideration is the address space restriction. Components of
differing configurations can not reside within the same address space and it is likely that if they do all of the
items that share attributes will have to use the richer definition. This can be mitigated as a weakness because it
can be viewed as a design constraint which provides designers with the architectural freedom to create a
solution that maximizes the savings.

Optional
Realization

Approach complicates the application of environmental tools and capabilities because the supporting
environment “doesn’t know” the composition of each of its constituent elements and it doesn’t know which of
those aspects is important to the implementation. The framework tools and supporting capabilities can use an
approach similar to that used with conditional inheritance to access the top level element, but it could lead to
inconsistent results if the underlying products are built with different philosophies. This approach may also
share the address space constraint.

All Interfaces
provided as
ports

Approach flattens the inheritance tree. It preserves the fact that a single well known interface. This shift
mandates that identifying or accessing any of the additional aspects or characteristics of a component will be
accomplished in an implementation specific manner. Having the ability to delegate removes the potential of
being able to consistently utilize polymorphic approaches to access capabilities across implementations. In the
long term that might hinder the development of additional capabilities to expand the availability of supporting
products.

Default
Implementation

Design approach utilizes currently available operating environment capabilities.

Status Quo Design approach utilizes currently available operating environment capabilities.

Development Support

31Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Approach /
Feature

How much will SCA Next impact the current collection of compliant products?

Conditional
Inheritance

The approaches other than provides ports all provide a mechanism to minimize the impact on existing
implementations. The versions that allow optimizations all have an alternative that provides an interface
structure similar to that which currently exists. Changes need to be applied to products if the designer chooses
to include them in their design. Additional changes will need to occur within the frameworks to support multiple
configurations in the configurations that allow optimizations, however those changes should not be overly
challenging, in many implementations it should simply be a byproduct of introducing additional decision logic.

Optional
Realization

All Interfaces
provided as
ports

The approach requires a modification of the existing products and infrastructure to accommodate the new
model. The problem of port identity also becomes a question if the spec does not enforce a uniform set of port
definitions.

Default
Implementation

Status Quo

Backward Compatibility

32Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Summary
• Optional Realization and Conditional Inheritance

are the two highest rated alternatives
– Both approaches represent viable alternatives that should

provide benefits to SCA Next
– Results could be manipulated if weighting were applied to

the categories
• Conditional Inheritance was selected for the SCA

Next draft
– Lifecycle cost and performance improvements are primary

drivers
– Approach prevents certain techniques and tools from being

applied, however in many cases the lack of those
capabilities are desirable for SCA implementations or there
are mitigation strategies being explored

– Prototyping will validate the effectiveness of the mitigation
strategy and the extent of the realized improvements

33Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Backup Slides

34Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Prioritized CI Benefits
• Provides additional SCA architecture flexibility to fit

wider range of environments
– E.g. NASA, commercial industry felt the SCA was too heavy

• Development Lifecycle Savings
• Security improvement

– Removes rather than stubs unused interfaces/operations
• Aligns with and complements other SCA Next

Features
– Optional Application interfaces
– Units of Functionality
– CORBA Profiles task

• Current micro profile disallows ANY

• Smaller footprint uses fewer resources and
potentially improves start time

35Statement A: Approved for public release, distribution is unlimited (04 May 2011).

CI Execution Savings

Executable

GPP

Component

Startup Savings
Moving a smaller binary would load
faster. How much precisely depends
the overall percentage size difference
and binary transfer speed.

NVM

36Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Case Study: CI Sizing
• Savings Measurements

– Using Resource.idl
• Compiler Options: no debug and optimize for space
• Compiled Stubs and Skeletons code only, no impl code

– Some Impl code would be required (e.g. to throw required exceptions, etc.)

– Roughly the minimum amount of savings per address space:

Switch
Executable Size

(bytes)
delta from NONE

(bytes)

NONE 757,060 -

TESTABLE 769,332 12,272

CONFIGURABLE 775,984 18,924

CONNECTABLE 768,244 11,184

CONTROLLABLE 773,392 16,332

INTERROGATABLE 766,824 9,764

V222_COMPAT 825,524 68,464

37Statement A: Approved for public release, distribution is unlimited (04 May 2011).

Case Study: CI Sizing
• Savings Measurements

– Using Resource.idl
• Compiler Options: debug and no optimization
• Compiled Stubs and Skeletons code and empty impl code

– Impl code still smaller than what may be required (e.g. to throw required
exceptions, etc.)

– Roughly the maximum amount of savings per address space:

Switch
Executable Size

(bytes)
delta from NONE

(bytes)

NONE 146,816 -

TESTABLE 214,004 67,188

CONFIGURABLE 235,192 88,376

CONNECTABLE 208,796 61,980

CONTROLLABLE 226,348 79,532

INTERROGATABLE 204,960 58,144

V222_COMPAT 485,372 338,556

